Estimating and Mapping Forest Inventory Variables Using the K-nn Method: Mocuba District Case Study - Mozambique

نویسندگان

  • G. Piovesan
  • Carla R. Pereira
چکیده

.......................................................................................................................................................... 5 LIST OF ACRONYMS ........................................................................................................................................ 7 LIST OF FIGURES .............................................................................................................................................. 7 LIST OF TABLES ................................................................................................................................................ 8 DEFINITIONS .................................................................................................................................................... 10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems

This paper describes applications of non-parametric and parametricmethods for estimating forest growing stock volumeusingLandsat images on the basis of data measured in the field, integrated with ancillary information. Several k-Nearest Neighbors (k-NN) algorithm configurations were tested in two study areas in Italy belonging toMediterranean andAlpine ecosystems. Field datawere acquired by the...

متن کامل

estimating forest leaf area index using satellite images : comparison of k - nn based landsat - nFi lai with moDis - rsr based lai product for Finland

Leaf area index (LAI) is a key variable for many ecological models, but it is typically not available from basic forest inventories. In this study, we (1) construct a high-resolution LAI map using k nearest-neighbor (k-NN) imputation based on National Forest Inventory data and Landsat 5 TM images (Landsat-NFI LAI), and (2) examine a moderate-resolution LAI map produced based on reduced simple r...

متن کامل

مقایسه روش‌های k نزدیک‌ترین همسایگی و شبکه عصبی مصنوعی برای پهنه‌بندی رقومی شوری خاک در منطقه چاه ‌افضل اردکان

Digital soil mapping techniques which incorporate the digital auxiliary environmental data to field observation data using software are more reliable and efficient compared to conventional surveys. Therefore, this study has been conducted to use k- Nearest Neighbors (k-NN) and artificial neural network (ANN) to predict spatial variability of soil salinity in Ardekan district in an area of 700 k...

متن کامل

Tsunami Vulnerability Mapping Using Remote Sensing and GIS Techniques: A Case Study of Kollam District, Kerala, India

Tsunamis are caused by the displacement of a large volume of water, generally in an ocean or a sea. Earthquakes, volcanic eruptions and other underwater explosions, landslides, glacier calvings, meteorite impacts and other disturbances above or below water have the potential to generate a tsunami. The coastal areas of Kollam district, the present study area was seriously affected by the catastr...

متن کامل

HIV Rapid Diagnostic Test Inventories in Zambézia Province, Mozambique: A Tale of 2 Test Kits

Background The first pillar of the UNAIDS 90-90-90 goal seeks to accurately identify persons living with HIV (PLHIV), a process that is predicated on facilities having the necessary HIV tests available to perform the task. In many rural settings, the identification of PLHIV is accomplished through a two-step process involving the sequential use of 2 separate rapid diagnostic tests (RDTs)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006